T AD-AO49 477  STANFORD UNIV CALIF SYSTEMS OPTIMIZATION LAB F/6 1271
A HYBRID APPROACH TO MULTI-STAGE LINEAR PROGRAMS.(U)

SEP 77 J K HO» J A TOMLIN uoooxu-'rs-c-ous
UNCLASSIFIED SOL=77=27
END f

DATE
FILMED

3= 78




s

KA
||\||§ m
iz s nes

el L P
g X

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963
-




RS bk A S oo S T A b 3L K s s b

s o

AD No.

\.
S eT————
a

AA049477

_copy}

<00 FLE

A HYBRID APPROACH TO MULTI-STAGE LINEAR PROGRAMS

BY
JAMES K. HO and JOHN A. TOMLIN

TECHNICAL REPORT SOL 77-27
SEPTEMBER 1977

DISTRIBUTION 5: 1{EMENT & |
i

Approved for public release;
Distribution Uniimited |

Systems Optimization Laboratory

Department of et e
Operations Al r

Research / |
\\ F 3

Stanford
University

tanford
alifornia

94305 i




o A v e A il e

A HYBRID APPROACH TO MULTI-STAGE LINEAR PROGRAMS

by

James K. Ho"F and John A. Tomlin*

TECHNICAL REPORT SOL 77-27 °,
September 1977 K

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

Stanford University
Stanford, California

fBrookhaven National Laboratory, Department of Applied Mathematics,
Upton, L.I., New York, 11973.

+
Institute for Advanced Computation, P.0. Box 9071, Sunnyvale,
California, 94086.

Research and reproduction of this report were partially supported by

the Energy Research and Development Administration Contract
EY-76-S-03-0326 PA #18; the National Science Foundation Grant MCS76-20019;
the Office of Naval Research Contract NO0014-75-C-0865; and the Army
Research Office Contract DAAG-29-74~C-0034.

Reproduction in whole or in part is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited. 4




T S AT AR YA

1. Introduction

For multi-stage linear programs with the staircase structure
it has been observed that a nested decomposition (Staircase) al-
gorithm [?],[3], can become more efficient than a direct Simplex
L approach. In general this tendancy increases with increasing problem
L size, However, even for smaller problems, the Staircase algorithm i
usually converges rapidly during Phase 1 and the beginning of

Phase 2 before exhibiting a long "tail" towards optimality. This

suggests a hybrid algorithm using Staircase initially and then
switching to Simplex. Since the Staircase algorithm produces
solutions which are in general nonbasic, a special interfacing

procedure is required in Simplex to adopt nonbasic starting solu-

tions,

Computational experience indicates that the hybrid algorithm

can be an efficient technique for medium size problems.
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We consider the linear programming problem of minimizing
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+ = =
Bt-l X 1 Ai X, dt' t - PR (1)
xt & Q. om Y
where S is 1 x n., xt is nt X 1, Alt is m, X n., Bt is
mt+1 X nt and dt is mt X 1 in dimensions.

In [2] and [3], the Staircase algorithm is developed from an
application of nested decomposition to (1). The original problem
is replaced by a sequence of smaller, independent subproblems co-
ordinated through price and proposal communication (in the sense
of Dantzig and Wolfe [1]) between adjacent subproblems. The algo-
rithm seeks an optimal coordination (if one exists) which in turn
determines an optimal solution to the original problem.

This is done in three phases. Phase 1 seeks an initial feas-
ible solution to (1) or shows that none exists. Phase 2 seeks an
optimal solution to (1) or shows that it is unbounded from below.
Throughout Phase 2, primal feasibility is maintained implicitly.
A Phase 3 procedure is required to reconstruct a feasible solu-
tion. This is normally done at optimality. Dual feasibility is
also maintained during Phase 2 so that a lower bound on the objec-
tive is available as an optimality criterion.

It has been observed in [3] that relative to a direct simplex

approach the Staircase algorithm becomes more efficient with




increasing problem size. However, the threshold problem size
differs considerably for different classes of Staircase problems.
Moreover, even for smaller problems, the Staircase algorithm
usually converges rapidly during Phase 1 and the beginning of
Phase 2 before exhibiting a relatively long "tail" of convergence

towards optimality.

3. Hybri
The above observation suggests using Staircase to obtain a
near-optimal solution and then switching over to Simplex. Hence,
a Hybrid algorithm will be:
Step (i): Phase 1 of Staircase
until feasibility.
Step (ii): Phase 2 of Staircase
until objective is within p % of
best lower bound where p is user supplied.
(p== implies skipping of Step (ii)).
Step (iii): Phase 3 of Staircase
for current feasible solution
Step (iv): Staircase~Simplex Interface
from solution in Step (iii) to
basic feasible solution.
Step (v): Phase 2 of Simplex,

until optimality.




Step (iv) is necessary because the solution obtained in
Step (iii) is in general nonbasic. The relative amount of work
in this extra step determines how well the Hybrid algorithm can

combine the advantages of its components.

4. The Staircase-Simplex Interface

Assuming similar data structure for Staircase and Simplex,
the actual amount of data transfer required for the switching
would be negligible. It remains to start Simplex efficiently

given a feasible but generally nonbasic solution.

Procedures for deriving basic feasible solutions from
non-basic feasible solutions are not new. In fact such pro-
cedures,, usually called 'BASIC', are incorporated in many com-
mercial mathematical programming systems (see e.g. [4]). Further-
more they have been used previously in ad hoc methods to partition
structured problems, such as Staircase problems. The general idea
is to manually or heuristically partition the right hand side

(resource) vector among the submodels (time periods or divisions)

which are then solved independently. Assuming a feasible partition
was chosen, a non-basic feasible solution will then be available. :
This non-basic solution (names and values of the variables not at
bound, together with bound information) is then used as a starting

point for the entire undecomposed problem, and the BASIC procedure
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is used to derive a basic feasible solution with at least as good
a value as the non-basic solution.

Although the BASIC proceedure has been implemented many times,
the methodology does not seem to have been published. We therefore

give an outline of the method (there are several variations).

Consider the problem of
minimizing cx
subject to Ax=b g
x20

with x a nonbasic feasible initial solution.

Let J = {j|;5>0} and set xj, jedJ nonbasic at a temporary bound (TB)
of x, with appropriate modification of the right hand side. Then proceed
as follows:
Step (0) Start with all logical (or artificial) basis.
Step (1) Stop if J=@. Price only xj,jeJ for reduced
cost d,.
J
Step (2) If dj < 0, make xj basic by increasing above

§5. i.e. treating TB as a lower bound. 1If

dj 2 0, make xj basic by decreasing below §5,

i.,e. treating TB as an upper bound.
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Step (3) Remove TB for xj and j from J.

Return to Step (1).

Note that with this procedure the logical basis in Step (0)
will be feasible at zero value since x is a feasible solution.
Therefore, initially many xj, jed will enter the basis without
changing their values from X.. Much of the computation in pricing
and pivot selection can be avoided if we first scan J and pivot
into the basis any xj on any row with a nonzero entry in the up-
dated xj column and a zero entry in the updated right-hand-side.
This "crash" procedure is equivalent to introducing the largest
independent subset of xj, jeJ into the basis before setting the

remainder to temporary bounds. Experiments have shown that this

is essential to the efficiency of the interface.

5. Computational Experience

The experimental codes are written in FORTRAN for the CDC
7600 at Brookhaven National Laboratory. SIMPLEX is based on the
revised simplex code LPMl with product form of inverse (cf [5]).
STAIRCASE is the implementation described in [3] , also based on
LPMl. HYBRID is based on STAIRCASE, SIMPLEX and the interface
procedure in Section 4.

Computational experience with three small- to medium-size

problems are reported in Tables 1 and 2 and Figure 1. It is ob-

served that HYBRID can be used to combine the advantages of STAIRCASE

and SIMPLEX.




€. Conclusion

Since the performance of special purpose
algorithms is uaually highly problem dependent, the flex-
ibility provided by a hybrid algorithm would be useful in a truly
versatile Staircase decomposition system. Furthermore, basic
solutions are usually preferable from a practical point of view,
since fewer activities are "active”. The advantage of the hybrid
algorithm we propcse over the ad hoc use of partitioning and the
BASIC procedure, is that the Staircase algorithm appears to be
successful in producing good feasible solutions relatively quickly
and does not rest on unreliable user partitioning of the problem.

Our preliminary computational results would indicate that the

hybrid approach may be one of the more successful for the notoriously

stubbom class of Staircase mhdels.
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PROBLEM

SC205 SCFXM1 SCFXM2

DIMENSIONS

PERIODS 3 4 8
ROWS 206 331 661
COLUMNS 409 788 1575
NONZEROS 758 2943 5890
% DENSITY 0.90 1.13 0.57

Table 1

Dimensions of Test Problems




CPU PROBLEM
TIME 8C205 SCFXM1 SCFXM2
SEC)

CODR
Phase 1 0.00 7.91 45.65
SIMPLEX Phase 2 3.84 3.89 29.06
Total 3.84 11.80 74.71
Relative 1.00 1.00 1.00
HYBRID STAIRCASE 1.48 4,65 14.50
INTERFACE 0.86 1.44 12.70
SIMPLEX 0.82 3.39 41.72
p=o Total 3.16 9.48 68.92
Relative 0.82 0.80 0.92
HYBRID STAIRCASE 2.34 5.32 16.38
INTERF ACE 0.92 1.06 10.27
SIMPLEX 0.75 3.06 21.17
p=25 Total 4,01 9.44 47.82
Relative 1.04 0.80 0.64
HYBRID STATIRCASE 3.01 7.64 26.11
INTERF ACE 0.92 i S 10.20
SIMPLEX 0.84 3.01% 13.42
p=10 Total 4,77 11.80 49,73
Relative 1.24 1.0 0.67
Phase 1 1.07 4,17 11.58
STAIRCASE Phase 2 3.92 9,04 33.98
Phase 3 0.48 1.18 2.95
Total 5.47 14.39 48.51
Relative 1.42 1.22 0.65

Table 2

Solution Times of the Test Problems
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Figure 1. Solution history of Problem SCFXMl.
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